Release 2.2 (August 27, 2010)
Database
· Added new data types “DTDate” and “DRDate”, based on new SQL Server 2008 “date” type (that has no time component)

· Changed birth dates in TBcrmPerson and TBcrmPersonName to use the DTDate type.

· Corrected the business rules code that caused the User and Group screens to be frozen.
Release 2.1 (June 22, 2010)
User Interface

· The annoying grid tool-tip has been removed.

· Grid and UI behavior is now more rational:

· Data entry on the CRM screen and in grids is now prohibited when there is no current record.

· “Add” and “Delete” buttons on grids are now active only when appropriate.

Business Rules

· ReadOnly status of all columns is now totally controlled from the Data Layer (via the Business Rules)

· Data entry is now disabled (from the Business Rules layer for consistency across all Uis) when an “As Of” date is specified during login.
Release 2.0 (June 3, 2010)

This is a major release with many changes. Release 2.0 is built using Visual Studio 2008, so you can no longer user Visual Studio 2005 to open it.
Database Generator Utility: Bug fixes
The previous generator failed to generate lookup routines (user functions and stored procedures) for foreign keys. The new version corrects this problem.
RAP Data Layer (DLMapper): Omission Fixed
The original RAP data layer contained some errors with regards to cascading deletions, and furthermore it did not handle detached rows properly. (Detached rows occur when users delete rows that have not yet been committed to the database.) All these problems are corrected in Release 2.0.
RAP Business Rules (BRBase): All New
The previous release of RAP had an empty business rules section. This release has a set of support objects designed to facilitate systematic construction of business rules in applications. The major components are:

· BRBase defines a security key object that stores all roles belonging to a logged-in user.

· BRBase defines an object called DataTableExtended, which is based on the standard DataTable but has the ability to add new computed columns that were not present in the original table. The purpose of DataTableExtended is to support the use of computed columns in the user interface.

· BRBase defines an object called DataView, which is a substitute for the standard DataView. Its purpose is to override certain undesirable behaviors of standard DataViews that make them hard to use in the UI of a RAP-based application.


· BRBase defines an object called DataViewSelectableRows, which is based on the BRBase DataView. It has the ability to store and recall a notion of which one of its rows is currently “selected”.


· Finally, BRBase defines an object called View that is the basis of all RAP data source objects exchanging data with the user interface. A View is an abstract class that is used to construct real classes containing multiple DataView or DataViewSelectableRows objects, each of which in turn sits on top of a DataTable or DataTableExtended. The purpose of a View is to provide all of the CRUD support for a user interface component that displays some set of related data. For example if you had a CRM system displaying persons and their addresses together, you’d build one View to support any UI component (a form or web page or web service interface perhaps) that needs to interact with combinations of persons and addresses.
The purpose of all these BRBase objects taken together is to allow users to easily construct complex data structures for the support of user interfaces. The View is designed to support all business logic relating to the supported data, so that none of the application’s business logic is encoded any one particular user interface. With all business logic performed in the business rules layer and none in the UI, it is easy to build multiple user interfaces that behave precisely the same way, since the behaviors of all UIs is controlled by the one common View object.
New Demo: Example CRM System

The extremely trivial application supplied with Release 1 has been replaced with a sample Customer Relationship Management (CRM) system. The database and data layer already support a complete CRM application that stores names, addresses, phone, and email information. However at this point the user interface supports only:

· the administration of Users, Groups and Roles (to assign capabilities to users of the system)


· the entry of Persons and their respective PersonNames; this system supports the entry of multiple names per person, with each name having an effective date.

Because this application makes extensive use of relationships, it demonstrates RAP’s capabilities in managing related data:
· Computed columns displayed along with the contents of one table can be based upon data appearing in related tables.


· RAP business rules automatically manage the filtering of child / peer table data so that such logic does not have to be embedded in the user interface.


· RAP’s sophisticated cascading deletion, which features the ability to ask the user for permission to cascade, is now an apparent part of the demonstration.

Future releases will embellish the user interface to the point where it supports complete data entry for all items that are already in the ExampleCRM schema (addresses, phone numbers, emails, etc.).
Data Layer (DLMapper)
The ExampleCRM application has a standard RAP-generated data layer.
Business Rules (BRViews)

As discussed above, the business rules section of a RAP application defines one View object in support of each complex UI element (i.e. form or screen displaying multiple related objects). There are two basic templates for designing the internal components of a View:

· one for parent/child relationships (one to many)

· and another for peer-to-peer relationships (many to many).

The ExampleCRM defines three Views:

· UsersWithGroups: This View supports a UI element that displays Users and their corresponding Groups. This is a peer-to-peer relationship. 

· GroupsWithUsersAndRoles: This View supports a UI element that displays Groups and their corresponding Users and Roles. Both Users and Roles have peer-to-peer relationships with Groups.


· PersonsWithNames: This View supports a UI element that displays Persons and their corresponding Names. This is a parent/child relationship.
It is hoped that some day RAP will generate all or part of the business rules code for any given set of relationships. However for the moment, this code serves as a set of templates that users can use to develop their own business rules.
RAP-based application developers are encouraged to build their own business rules Views based upon the Views supplied in this project.

User Interface

The ExampleCRM user interface, like its business rules section, supports only a tiny fraction of the eventual CRM system. The three elements of the UI display the three items described above in the Business Rules. It is expected that a future version of RAP will flesh out the entire CRM system. For the moment, the 2.0 UI can be used as a template for designing RAP-based UI components. One of the purposes of the ExampleCRM UI is to show how it is possible to eliminate essentially all business rule logic from a RAP project’s user interface (all code in the ExampleCRM UI is in support of the user interface members; there is no business logic in the UI).
A future version of RAP should demonstrate multiple user interfaces sitting atop the same business rules. This future version will demonstrate that precisely the same code (in the business rules) governs the data-management behaviors of all user interfaces:

· parent/child relationship management

· peer-to-peer relationship management

· computation of “computed” data (i.e. computed columns)

Release 1.2.1 (June 29, 2009)

This intermediate point release improves some of the naming conventions used in RAP and also makes some other small but significant changes:

1. All the static (i.e. constant) column names within each generated RAP DataTable now belong to a sub-class called ColumnNames. Each table creates its own single internal instantiation of its own ColumnNames class and provides public access to it. So, a column previously named TableName.ColumnNameWhatever is now called TableName.ColumnNames.Whatever. This has the advantage of grouping all static column names under one name space rather than having them interspersed throughout the table’s other properties. It also has the disadvantage of using column names directly as property names, so that such names now have the potential for conflicting with VB/C# keywords. The generated code compiles properly even if such conflicts exist, however, because all declarations and auto-generated uses of such variables are now “literalized” (i.e. surrounded by square brackets in VB and preceded by “@” in C#).
2. Similarly, the (non-static) named columns of the generated tables are now grouped together in a sub-class called NamedColumns. So named columns that formerly looked like columnWhatever now look like NamedColumns.Whatever. As with ColumnNames (above), this eliminates the cluttering of the table’s general properties with the named columns’ names.
3. The interface to all RAP-generated DataTables has changed. The MustOverride function InitVars is now gone, and the InitClass function was renamed to BuildColumns.
4. All RAP assemblies are now under the ProjectPro.RAP name space. This required a readjustment of references throughout the projects (e.g. all references to “DLMapper” are now changed to “ProjectPro.RAP.DLMapper”.
5. Various superfluous pieces of code in the RAP data layer were removed, and the inline documentation for some of the remaining functions, methods, and properties was dramatically improved.
6. The Instructions document (that describes how to build SampleApp) is dramatically improved and now features inline screen shots. Thanks much to Project Pro associate Neelaxi Phatak for this improvement.

Release 1.2 (May 18, 2009)
Release 1.2 improves upon Release 1.1in the following ways:

· RAP now resides in its own separate directory structure, and both it and its associated utilities are now completely separate from the sample application. This means that users can now actually build applications patterned after the sample application, and RAP will work with such applications (previously it would have taken some considerable effort to attach a different application to RAP).

· Both RAP and the sample application have been neatly divided into a four-tier structure:

· database (1 - DB)

· data layer (2 - DL)

· business rules (3 - BR)

· user interface (4 - UI)

· The RAP code generator utility now generates code that instantiates tables and all the relationships among the tables. Such generated code can be seen in the SampleApp’s data layer class named “TableManager”, which instantiates tables for the application. This code tells the RAP mapper (DLMapper) how to cascade deletions of both parents and children of deleted items. The purpose of this will be more obvious in the next release, which will contain a SampleApp that demonstrates RAP’s handling of multi-table database editing.
· The RAP code generator utility now generates both VB and C# versions of all generated .NET code, which includes:

· table definitions

· table instantiation code (in the table manager)
· The sample application database has been cleared of all extraneous stuff; it now contains only the tables required for the example to run.

Release 1.1 (November 19, 2008)

Release 1.1 improves upon Release 1.0 in the following ways:

· Eliminates the redundant CreationDate and CreatedBy fields from the database and all database code generators.

· Now uses “output” clauses to populate the archive tables, replacing the separate “InsertA” stored procedures that were formerly used.

· Eliminates the now-unnecessary transaction code at the beginning and end of all CUD routines, made superfluous by the new usage of the “output” clauses that combine both “write” operations into a single atomic operation.

· Adds a final argument “AuditDateNEW” to all CUD routines, allowing all of the operations in a single database “write” operation to have precisely the same AuditDate; formerly the routines used “getdate” to produce their own AuditDates independently, leading to the possibility that a group of records intended to be written and read as a single unit might have slightly different AuditDate values on their records, leading to the possibility of a partial “read”.

Release 1.0

This is the initial version of RAP, containing:

· database DDL support routines

· database DDL preprocessor

· database code generator

· sample application

